派发更新

通过上一节分析我们了解了响应式数据依赖收集过程,收集的目的就是为了当我们修改数据的时候,可以对相关的依赖派发更新,那么这一节我们来详细分析这个过程。

我们先来回顾一下 setter 部分的逻辑:

/**
 * Define a reactive property on an Object.
 */
export function defineReactive (
  obj: Object,
  key: string,
  val: any,
  customSetter?: ?Function,
  shallow?: boolean
) {
  const dep = new Dep()

  const property = Object.getOwnPropertyDescriptor(obj, key)
  if (property && property.configurable === false) {
    return
  }

  // cater for pre-defined getter/setters
  const getter = property && property.get
  const setter = property && property.set
  if ((!getter || setter) && arguments.length === 2) {
    val = obj[key]
  }

  let childOb = !shallow && observe(val)
  Object.defineProperty(obj, key, {
    enumerable: true,
    configurable: true,
    // ...
    set: function reactiveSetter (newVal) {
      const value = getter ? getter.call(obj) : val
      /* eslint-disable no-self-compare */
      if (newVal === value || (newVal !== newVal && value !== value)) {
        return
      }
      /* eslint-enable no-self-compare */
      if (process.env.NODE_ENV !== 'production' && customSetter) {
        customSetter()
      }
      if (setter) {
        setter.call(obj, newVal)
      } else {
        val = newVal
      }
      childOb = !shallow && observe(newVal)
      dep.notify()
    }
  })
}

setter 的逻辑有 2 个关键的点,一个是 childOb = !shallow && observe(newVal),如果 shallow 为 false 的情况,会对新设置的值变成一个响应式对象;另一个是 dep.notify(),通知所有的订阅者,这是本节的关键,接下来我会带大家完整的分析整个派发更新的过程。

过程分析

当我们在组件中对响应的数据做了修改,就会触发 setter 的逻辑,最后调用 dep.notify() 方法, 它是 Dep 的一个实例方法,定义在 src/core/observer/dep.js 中:

class Dep {
  // ...
  notify () {
  // stabilize the subscriber list first
    const subs = this.subs.slice()
    for (let i = 0, l = subs.length; i < l; i++) {
      subs[i].update()
    }
  }
}

这里的逻辑非常简单,遍历所有的 subs,也就是 Watcher 的实例数组,然后调用每一个 watcherupdate 方法,它的定义在 src/core/observer/watcher.js 中:

class Watcher {
  // ...
  update () {
    /* istanbul ignore else */
    if (this.computed) {
      // A computed property watcher has two modes: lazy and activated.
      // It initializes as lazy by default, and only becomes activated when
      // it is depended on by at least one subscriber, which is typically
      // another computed property or a component's render function.
      if (this.dep.subs.length === 0) {
        // In lazy mode, we don't want to perform computations until necessary,
        // so we simply mark the watcher as dirty. The actual computation is
        // performed just-in-time in this.evaluate() when the computed property
        // is accessed.
        this.dirty = true
      } else {
        // In activated mode, we want to proactively perform the computation
        // but only notify our subscribers when the value has indeed changed.
        this.getAndInvoke(() => {
          this.dep.notify()
        })
      }
    } else if (this.sync) {
      this.run()
    } else {
      queueWatcher(this)
    }
  }
}  

这里对于 Watcher 的不同状态,会执行不同的逻辑,computedsync 等状态的分析我会之后抽一小节详细介绍,在一般组件数据更新的场景,会走到最后一个 queueWatcher(this) 的逻辑,queueWatcher 的定义在 src/core/observer/scheduler.js 中:

const queue: Array<Watcher> = []
let has: { [key: number]: ?true } = {}
let waiting = false
let flushing = false
/**
 * Push a watcher into the watcher queue.
 * Jobs with duplicate IDs will be skipped unless it's
 * pushed when the queue is being flushed.
 */
export function queueWatcher (watcher: Watcher) {
  const id = watcher.id
  if (has[id] == null) {
    has[id] = true
    if (!flushing) {
      queue.push(watcher)
    } else {
      // if already flushing, splice the watcher based on its id
      // if already past its id, it will be run next immediately.
      let i = queue.length - 1
      while (i > index && queue[i].id > watcher.id) {
        i--
      }
      queue.splice(i + 1, 0, watcher)
    }
    // queue the flush
    if (!waiting) {
      waiting = true
      nextTick(flushSchedulerQueue)
    }
  }
}

这里引入了一个队列的概念,这也是 Vue 在做派发更新的时候的一个优化的点,它并不会每次数据改变都触发 watcher 的回调,而是把这些 watcher 先添加到一个队列里,然后在 nextTick 后执行 flushSchedulerQueue

这里有几个细节要注意一下,首先用 has 对象保证同一个 Watcher 只添加一次;接着对 flushing 的判断,else 部分的逻辑稍后我会讲;最后通过 wating 保证对 nextTick(flushSchedulerQueue) 的调用逻辑只有一次,另外 nextTick 的实现我之后会抽一小节专门去讲,目前就可以理解它是在下一个 tick,也就是异步的去执行 flushSchedulerQueue

接下来我们来看 flushSchedulerQueue 的实现,它的定义在 src/core/observer/scheduler.js 中。

let flushing = false
let index = 0
/**
 * Flush both queues and run the watchers.
 */
function flushSchedulerQueue () {
  flushing = true
  let watcher, id

  // Sort queue before flush.
  // This ensures that:
  // 1. Components are updated from parent to child. (because parent is always
  //    created before the child)
  // 2. A component's user watchers are run before its render watcher (because
  //    user watchers are created before the render watcher)
  // 3. If a component is destroyed during a parent component's watcher run,
  //    its watchers can be skipped.
  queue.sort((a, b) => a.id - b.id)

  // do not cache length because more watchers might be pushed
  // as we run existing watchers
  for (index = 0; index < queue.length; index++) {
    watcher = queue[index]
    if (watcher.before) {
      watcher.before()
    }
    id = watcher.id
    has[id] = null
    watcher.run()
    // in dev build, check and stop circular updates.
    if (process.env.NODE_ENV !== 'production' && has[id] != null) {
      circular[id] = (circular[id] || 0) + 1
      if (circular[id] > MAX_UPDATE_COUNT) {
        warn(
          'You may have an infinite update loop ' + (
            watcher.user
              ? `in watcher with expression "${watcher.expression}"`
              : `in a component render function.`
          ),
          watcher.vm
        )
        break
      }
    }
  }

  // keep copies of post queues before resetting state
  const activatedQueue = activatedChildren.slice()
  const updatedQueue = queue.slice()

  resetSchedulerState()

  // call component updated and activated hooks
  callActivatedHooks(activatedQueue)
  callUpdatedHooks(updatedQueue)

  // devtool hook
  /* istanbul ignore if */
  if (devtools && config.devtools) {
    devtools.emit('flush')
  }
}

这里有几个重要的逻辑要梳理一下,对于一些分支逻辑如 keep-alive 组件相关和之前提到过的 updated 钩子函数的执行会略过。

  • 队列排序

queue.sort((a, b) => a.id - b.id) 对队列做了从小到大的排序,这么做主要有以下要确保以下几点:

1.组件的更新由父到子;因为父组件的创建过程是先于子的,所以 watcher 的创建也是先父后子,执行顺序也应该保持先父后子。

2.用户的自定义 watcher 要优先于渲染 watcher 执行;因为用户自定义 watcher 是在渲染 watcher 之前创建的。

3.如果一个组件在父组件的 watcher 执行期间被销毁,那么它对应的 watcher 执行都可以被跳过,所以父组件的 watcher 应该先执行。

  • 队列遍历

在对 queue 排序后,接着就是要对它做遍历,拿到对应的 watcher,执行 watcher.run()。这里需要注意一个细节,在遍历的时候每次都会对 queue.length 求值,因为在 watcher.run() 的时候,很可能用户会再次添加新的 watcher,这样会再次执行到 queueWatcher,如下:

export function queueWatcher (watcher: Watcher) {
  const id = watcher.id
  if (has[id] == null) {
    has[id] = true
    if (!flushing) {
      queue.push(watcher)
    } else {
      // if already flushing, splice the watcher based on its id
      // if already past its id, it will be run next immediately.
      let i = queue.length - 1
      while (i > index && queue[i].id > watcher.id) {
        i--
      }
      queue.splice(i + 1, 0, watcher)
    }
    // ...
  }
}

可以看到,这时候 flushing 为 true,就会执行到 else 的逻辑,然后就会从后往前找,找到第一个待插入 watcher 的 id 比当前队列中 watcher 的 id 大的位置。把 watcher 按照 id的插入到队列中,因此 queue 的长度发送了变化。

  • 状态恢复

这个过程就是执行 resetSchedulerState 函数,它的定义在 src/core/observer/scheduler.js 中。

const queue: Array<Watcher> = []
let has: { [key: number]: ?true } = {}
let circular: { [key: number]: number } = {}
let waiting = false
let flushing = false
let index = 0
/**
 * Reset the scheduler's state.
 */
function resetSchedulerState () {
  index = queue.length = activatedChildren.length = 0
  has = {}
  if (process.env.NODE_ENV !== 'production') {
    circular = {}
  }
  waiting = flushing = false
}

逻辑非常简单,就是把这些控制流程状态的一些变量恢复到初始值,把 watcher 队列清空。

接下来我们继续分析 watcher.run() 的逻辑,它的定义在 src/core/observer/watcher.js 中。

class Watcher {
  /**
   * Scheduler job interface.
   * Will be called by the scheduler.
   */
  run () {
    if (this.active) {
      this.getAndInvoke(this.cb)
    }
  }

  getAndInvoke (cb: Function) {
    const value = this.get()
    if (
      value !== this.value ||
      // Deep watchers and watchers on Object/Arrays should fire even
      // when the value is the same, because the value may
      // have mutated.
      isObject(value) ||
      this.deep
    ) {
      // set new value
      const oldValue = this.value
      this.value = value
      this.dirty = false
      if (this.user) {
        try {
          cb.call(this.vm, value, oldValue)
        } catch (e) {
          handleError(e, this.vm, `callback for watcher "${this.expression}"`)
        }
      } else {
        cb.call(this.vm, value, oldValue)
      }
    }
  }
}

run 函数实际上就是执行 this.getAndInvoke 方法,并传入 watcher 的回调函数。getAndInvoke 函数逻辑也很简单,先通过 this.get() 得到它当前的值,然后做判断,如果满足新旧值不等、新值是对象类型、deep 模式任何一个条件,则执行 watcher 的回调,注意回调函数执行的时候会把第一个和第二个参数传入新值 value 和旧值 oldValue,这就是当我们添加自定义 watcher 的时候能在回调函数的参数中拿到新旧值的原因。

那么对于渲染 watcher 而言,它在执行 this.get() 方法求值的时候,会执行 getter 方法:

updateComponent = () => {
  vm._update(vm._render(), hydrating)
}

所以这就是当我们去修改组件相关的响应式数据的时候,会触发组件重新渲染的原因,接着就会重新执行 patch 的过程,但它和首次渲染有所不同,之后我们会花一小节去详细介绍。

总结

通过这一节的分析,我们对 Vue 数据修改派发更新的过程也有了认识,实际上就是当数据发生变化的时候,触发 setter 逻辑,把在依赖过程中订阅的的所有观察者,也就是 watcher,都触发它们的 update 过程,这个过程又利用了队列做了进一步优化,在 nextTick 后执行所有 watcherrun,最后执行它们的回调函数。nextTick 是 Vue 一个比较核心的实现了,下一节我们来重点分析它的实现。